文章详情

CVPR Earthvision数据挑战2scale现代压缩方法重新定义了我们处理和分析卫星图像的方式。 In this article, we introduce the 2025...
2025-04-02 02:10:02
文章详情介绍
现代压缩方法重新定义了我们处理和分析卫星图像的方式。 In this article, we introduce the 2025 CVPR EARTHVISION Data Challenge — an initiative by the Horizon Europe Embed2Scale ¹ consortium to advance neural compression for Earth Observation data.
有关该主题的全面审查,请阅读我们的最新出版物,用于地理空间分析的有损神经压缩:审查。
Earth Observation (EO) data is growing at an unprecedented pace, with satellites capturing terabytes of high-resolution imagery daily, and EO repositories ranking among the largest data stores globally.例如,近年来,Sentinel数据访问系统在下载中记录了586个PIB。 Efficiently transmitting, storing, and analyzing these vast datasets is essential to unlock insights across diverse applications such as environmental monitoring and disaster management.
The broad spectrum of EO data types — including radar, LiDAR, hyperspectral, and multispectral imagery — presents unique challenges for image compression techniques.当前,应用了经常用于JPEG2000(例如JPEG2000)的手工制作的压缩算法。最近以数据驱动的方法(例如神经压缩)表明有可能达到明显更高的压缩率。
Neural compression typically employs an encoder-decoder architecture trained to convert raw input data into a compact representation, named embedding, from which the original input can be (approximately) reconstructed by a trained decoder.编码器学会生成根据相应数据的特定结构量身定制的紧凑型嵌入。 These embeddings not only reduce the overall data size but also preserve critical features necessary for further analysis, such as scene classification and semantic segmentation.现代下游任务模型无需重建输入,而是可以直接在这些紧凑的压缩表示方面进行培训。
作为Embed2scale财团的一部分,IBM研究正在探索EO的神经数据压缩。 Embed2Scale项目着重于开发紧凑,可重复使用的数据嵌入,并在现实世界应用程序上进行基准测试。
On March 10, 2025, the Embed2Scale consortium launched the 2025 CVPR EARTHVISION Data Challenge , inviting researchers and AI practitioners to develop innovative EO data compression techniques. Participants are tasked with designing an encoder that transforms high-dimensional satellite image data cubes into compact, fixed-size embeddings.
从数据立方体到嵌入During the development phase in March, participants will pretrain their encoders using self-supervised learning methods that underpin neural compression and EO foundation models. The SSL4EO-S12 ⁴ dataset combines radar and multispectral image bands from four-season snapshots, illustrating the multi-temporal and multi-modal character of EO data.这些数据包必须被约7000倍压缩到紧凑的1024维嵌入中。
For evaluation, participants will submit embeddings generated with their compression encoder, which will be assessed through hidden downstream tasks to determine how effectively relevant information is preserved.
The challenge provides participants with the opportunity to test and enhance state-of-the-art compression methods, and highlights the benefits of compact embeddings. Beyond advancing lossy neural compression, the challenge promotes open-source and open-science efforts and establishes a benchmarking framework for compressed geospatial embeddings. The Embed2Scale consortium invites the AI community to adopt this novel data benchmark evaluation scheme and contribute additional downstream tasks.挑战的结果,代码和数据将在今年的CVPR会议上介绍。
挑战细节和时间表挑战是开放的,可以通过我们的eval.ai挑战门户访问。
The development phase — March 10–31: You will have three weeks in March 2025 to develop your encoder and test the quality of your embeddings by interacting with this challenge portal Eval.AI , submitting embeddings for data available on HuggingFace .The testing phase — April 3–5: The 1st week of April will allow you three submissions in three days, based on a separate dataset made public on HuggingFace two days prior. This phase determines the final leaderboard and challenge winner, who will present their solution at the workshop in Nashville, TN, USA, or remotely based on availability.The winners presentation — June 11–12: After the CVPR EARTHVISION has come to a conclusion, the consortium will open-source the benchmark framework to serve the EO compression community, enabling the addition of downstream tasks and pushing the boundaries of neural compression.最新思能攻略
更多- 如何获得燕云十六声龙骨图-燕云十六声龙骨图的具体获取途径与方法
- 艾尔登法环黑夜君临网络测试报名方法及入口分享
- 逆水寒手游寻宝司南获取方法详解-完整的逆水寒寻宝司南获取流程介绍
- 燕云十六声乞丐与犬类的奇妙冒险历程-乞丐与狗的奇遇通关攻略
- OpenAI智能体最新动态揭晓,网友热议:新版本ChatGPT即将上线
- 国产AI新势力崛起,DeepSeek与Kimi在一夜之间对抗OpenAI o1,实测其强大实力
- 如何获取王者荣耀小王开麦节头像框-详细介绍王者荣耀小王开麦节头像框的获得方式
- 如何在决战平安京中获得少羽大天狗的详细步骤和方法
- 燕云十六声71级金装获取方法详解-71级金装的主要获得途径
- 原神剪影辑帧活动全关卡流程详解与攻略分享
- 大模型推理的创新进展:分布式推理技术的深入探索与应用实践
- 和平精英金蛇赛2025年度灵敏度设置全面解析,助力玩家提升游戏体验
- 为何即便心知不应,您仍然对人工智能深信不疑
- 原神5.3版本新武器获取方法及详细介绍
- 第五人格古董商OPH.QI新皮肤深度解析-古董商OPH.QI皮肤特色与展示
最新思能智能
更多- 燕云十六声公测预约奖励如何获取-燕云十六声公测奖励的领取方法详解
- 9I破解版免费版安装:畅享高质量游戏体验,快速提升游戏技巧
- 龙息神寂预言码的详细生成攻略与技巧解析
- Dota2裂变天地S1预选赛详细赛程和赛程安排列表
- 《不戴套的瑜伽教练3》动漫:探索瑜伽与游戏融合的全新视角,畅享身心愉悦的体验
- 巫师3如何获取怪物蛋-汇总巫师3怪物蛋的获取途径与技巧
- 暗区突围如何利用背包卡Bug技巧-暗区突围背包卡顿问题解决方法
- 燕云十六声朱八碗对话答案详细解析和最新公布情况
- 燕云十六声全新id昵称分享大全-各类昵称一览介绍
- 鸣潮2.2版本前瞻直播时间及观看地址详细分享
- dnf手游混沌结晶的作用解析及具体用途介绍
- 英雄联盟2025阿狸魅惑之舞活动详细指南与入口说明
- 艾尔登法环黄金树阴影DLC详细开启攻略与注意事项
- cfm赛季时间表详细介绍-穿越火线最新赛季时间安排分享
- 2025年英雄联盟蛇年春节盛典活动全景盘点与玩法介绍